

Safety and Liveness, Fairness

Dr. Liam O'Connor CSE, UNSW (for now) Term 1 2020

Behaviours

Recall

The infinite traces of a Kripke structure are called *behaviours*. So they are infinite sequences of state labels $\subseteq (2^{\mathcal{P}})^{\omega}$.

How many behaviours for these automata?

Behaviours

Recall

The infinite traces of a Kripke structure are called *behaviours*. So they are infinite sequences of state labels $\subseteq (2^{\mathcal{P}})^{\omega}$.

How many behaviours for these automata?

Behaviours

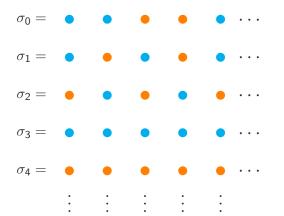
Recall

The infinite traces of a Kripke structure are called *behaviours*. So they are infinite sequences of state labels $\subseteq (2^{\mathcal{P}})^{\omega}$.

How many behaviours for these automata?

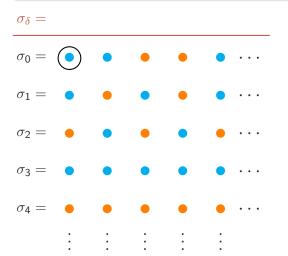
Cantor's Uncountability Argument

Result



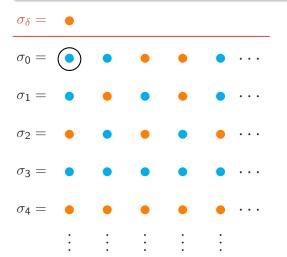
Cantor's Uncountability Argument

Result



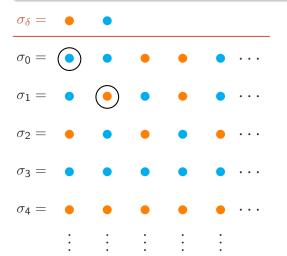
Cantor's Uncountability Argument

Result



Cantor's Uncountability Argument

Result



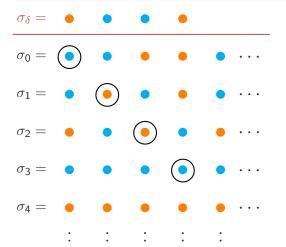
Cantor's Uncountability Argument

Result



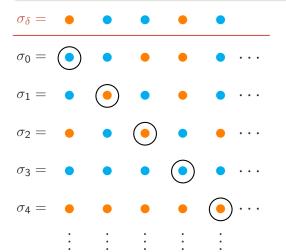
Cantor's Uncountability Argument

Result



Cantor's Uncountability Argument

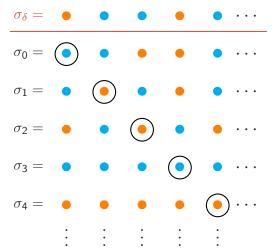
Result



Cantor's Uncountability Argument

Result

It is impossible in general to enumerate the space of all behaviours.



Proof

Suppose there \exists a sequence $\sigma_0 \sigma_1 \sigma_2 \dots$ that enumerates all behaviours. Then we can construct a devilish sequence σ_{δ} that differs from any σ_i at the *i*th position, and thus is not in our sequence. **Contradiction!**

Metric for Behaviours

We define the *distance* $d(\sigma, \rho) \in \mathbb{R}_{\geq 0}$ between two behaviours σ and ρ as follows:

$$d(\sigma,\rho) = 2^{-\sup\{i \in \mathbb{N} \mid \sigma|_i = \rho|_i\}}$$

(we say that $2^{-\infty} = 0$)

We define the *distance* $d(\sigma, \rho) \in \mathbb{R}_{\geq 0}$ between two behaviours σ and ρ as follows:

$$d(\sigma,\rho) = 2^{-\sup\{i \in \mathbb{N} \mid \sigma|_i = \rho|_i\}}$$

(we say that $2^{-\infty} = 0$) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree.

We define the *distance* $d(\sigma, \rho) \in \mathbb{R}_{\geq 0}$ between two behaviours σ and ρ as follows:

$$d(\sigma,\rho) = 2^{-\sup\{i \in \mathbb{N} \mid \sigma|_i = \rho|_i\}}$$

(we say that $2^{-\infty} = 0$) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree.

Observations

•
$$d(x,y) = 0 \Leftrightarrow x = y$$

We define the *distance* $d(\sigma, \rho) \in \mathbb{R}_{\geq 0}$ between two behaviours σ and ρ as follows:

$$d(\sigma,\rho) = 2^{-\sup\{i \in \mathbb{N} \mid \sigma|_i = \rho|_i\}}$$

(we say that $2^{-\infty} = 0$) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree.

Observations

•
$$d(x,y) = 0 \Leftrightarrow x = y$$

•
$$d(x,y) = d(y,x)$$

We define the *distance* $d(\sigma, \rho) \in \mathbb{R}_{\geq 0}$ between two behaviours σ and ρ as follows:

$$d(\sigma,\rho) = 2^{-\sup\{i \in \mathbb{N} \mid \sigma|_i = \rho|_i\}}$$

(we say that $2^{-\infty} = 0$) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree.

Observations

•
$$d(x, y) = 0 \Leftrightarrow x = y$$

•
$$d(x,y) = d(y,x)$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$

We define the *distance* $d(\sigma, \rho) \in \mathbb{R}_{\geq 0}$ between two behaviours σ and ρ as follows:

$$d(\sigma,\rho) = 2^{-\sup\{i \in \mathbb{N} \mid \sigma|_i = \rho|_i\}}$$

(we say that $2^{-\infty} = 0$) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree.

Observations

•
$$d(x,y) = 0 \Leftrightarrow x = y$$

•
$$d(x,y) = d(y,x)$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$

This forms a *metric space* and thus a *topology* on behaviours.

Definition

A set S of subsets of U is called a *topology* if it contains \emptyset and U, and is closed under union and finite intersection. Elements of S are called *open* and complements of open sets are called *closed*.

Definition

A set S of subsets of U is called a *topology* if it contains \emptyset and U, and is closed under union and finite intersection. Elements of S are called *open* and complements of open sets are called *closed*.

Example (Sierpiński Space) Let $U = \{0, 1\}$ and $S = \{\emptyset, \{1\}, U\}$.

Definition

A set S of subsets of U is called a *topology* if it contains \emptyset and U, and is closed under union and finite intersection. Elements of S are called *open* and complements of open sets are called *closed*.

Example (Sierpiński Space)

Let $U = \{0, 1\}$ and $S = \{\emptyset, \{1\}, U\}$.

Questions

• What are the closed sets of the Sierpiński space?

Definition

A set S of subsets of U is called a *topology* if it contains \emptyset and U, and is closed under union and finite intersection. Elements of S are called *open* and complements of open sets are called *closed*.

Example (Sierpiński Space)

Let $U = \{0, 1\}$ and $S = \{\emptyset, \{1\}, U\}$.

Questions

- What are the closed sets of the Sierpiński space?
- Can a set be *clopen* i.e. both open and closed?

Topology for Metric Spaces

Our metric space can be viewed as a topology by defining our open sets as (unions of) *open balls*:

$$B(\sigma, r) = \{ \rho \mid d(\sigma, \rho) < r \}$$

This is analogous to open and closed ranges of numbers.

Topology for Metric Spaces

Our metric space can be viewed as a topology by defining our open sets as (unions of) *open balls*:

$$B(\sigma, r) = \{ \rho \mid d(\sigma, \rho) < r \}$$

This is analogous to open and closed ranges of numbers.

Why do we care?

Viewing behaviours as part of a metric space gives us notions of limits, convergence, density and many other mathematical tools.

Limits and Boundaries

Consider a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$

Consider a sequence of behaviours $\sigma_0\sigma_1\sigma_2\ldots$. The behaviour σ_ω is called a *limit* of this sequence if the sequence *converges* to σ_ω

Consider a sequence of behaviours $\sigma_0\sigma_1\sigma_2...$ The behaviour σ_{ω} is called a *limit* of this sequence if the sequence *converges* to σ_{ω} , i.e. for any positive ε :

 $\exists n. \forall i \geq n. d(\sigma_i, \sigma_\omega) < \varepsilon$

Consider a sequence of behaviours $\sigma_0\sigma_1\sigma_2...$ The behaviour σ_{ω} is called a *limit* of this sequence if the sequence *converges* to σ_{ω} , i.e. for any positive ε :

$$\exists n. \forall i \geq n. d(\sigma_i, \sigma_\omega) < \varepsilon$$

The *limit-closure* or *closure* of a set A, written \overline{A} , is the set of all the limits of sequences in A.

Consider a sequence of behaviours $\sigma_0\sigma_1\sigma_2...$ The behaviour σ_{ω} is called a *limit* of this sequence if the sequence *converges* to σ_{ω} , i.e. for any positive ε :

$$\exists n. \forall i \geq n. d(\sigma_i, \sigma_\omega) < \varepsilon$$

The *limit-closure* or *closure* of a set A, written \overline{A} , is the set of all the limits of sequences in A.

 Question

 Is $A \subseteq \overline{A}$?

Consider a sequence of behaviours $\sigma_0\sigma_1\sigma_2...$ The behaviour σ_{ω} is called a *limit* of this sequence if the sequence *converges* to σ_{ω} , i.e. for any positive ε :

$$\exists n. \forall i \geq n. d(\sigma_i, \sigma_\omega) < \varepsilon$$

The *limit-closure* or *closure* of a set A, written \overline{A} , is the set of all the limits of sequences in A.

Question

Is $A \subseteq \overline{A}$?

A set A is called *limit-closed* if $\overline{A} = A$. It is easy (but not relevant) to prove that limit-closed sets and closed sets are the same.

Consider a sequence of behaviours $\sigma_0\sigma_1\sigma_2...$ The behaviour σ_{ω} is called a *limit* of this sequence if the sequence *converges* to σ_{ω} , i.e. for any positive ε :

$$\exists n. \forall i \geq n. d(\sigma_i, \sigma_\omega) < \varepsilon$$

The *limit-closure* or *closure* of a set A, written \overline{A} , is the set of all the limits of sequences in A.

Question

Is $A \subseteq \overline{A}$?

A set A is called *limit-closed* if $\overline{A} = A$. It is easy (but not relevant) to prove that limit-closed sets and closed sets are the same. A set A is called *dense* if $\overline{A} = (2^{\mathcal{P}})^{\omega}$ i.e. the closure is the space of all behaviours.

Recall

A linear temporal property is a set of behaviours.

Recall

A linear temporal property is a set of behaviours.

A *safety* property states that something **bad** does not happen.
 For example:

I will never run out of money.

These are properties that may be violated by a finite prefix of a behaviour.

Recall

A linear temporal property is a set of behaviours.

A *safety* property states that something **bad** does not happen.
 For example:

I will never run out of money.

These are properties that may be violated by a finite prefix of a behaviour.

A *liveness* property states that something **good** will happen. For example:

If I start drinking now, eventually I will be smashed.

These are properties that can always be satisfied eventually.

Properties Examples

Try to express these in LTL. Are they safety or liveness?

• When I come home, there must be beer in the fridge

Properties Examples

Try to express these in LTL. Are they safety or liveness?

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory Liveness
- No two processes are simultaneously in their critical section

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory Liveness
- No two processes are simultaneously in their critical section Safety
- If a process wishes to enter its critical section, it will eventually be allowed to do so

- When I come home, there must be beer in the fridge Safety
- When I come home, I'll drop on the couch and drink a beer Liveness
- I'll be home later Liveness
- The program never allocates more than 100MB of memory Safety
- The program will allocate at least 100MB of memory Liveness
- No two processes are simultaneously in their critical section Safety
- If a process wishes to enter its critical section, it will eventually be allowed to do so Liveness

Let P be a safety property.

• Assume that there exists a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$ such that every $\sigma_i \in P$ but their limit $\sigma_\omega \notin P$.

- Assume that there exists a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$ such that every $\sigma_i \in P$ but their limit $\sigma_\omega \notin P$.
- For σ_ω to violate the safety property P, there must be a specific state in σ_ω where shit hit the fan.

- Assume that there exists a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$ such that every $\sigma_i \in P$ but their limit $\sigma_\omega \notin P$.
- For σ_{ω} to violate the safety property P, there must be a specific state in σ_{ω} where shit hit the fan. That is, there must be a specific k such that any behaviour with the prefix $\sigma_{\omega}|_k$ is not in P.

- Assume that there exists a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$ such that every $\sigma_i \in P$ but their limit $\sigma_\omega \notin P$.
- For σ_{ω} to violate the safety property *P*, there must be a specific state in σ_{ω} where shit hit the fan. That is, there must be a specific *k* such that any behaviour with the prefix $\sigma_{\omega}|_k$ is not in *P*.
- For σ_ω to be the limit of our sequence, however, that means there is a particular point in our sequence *i* after which all σ_j for *j* ≥ *i* agree with σ_ω for the first *k* + 1 states.

- Assume that there exists a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$ such that every $\sigma_i \in P$ but their limit $\sigma_\omega \notin P$.
- For σ_{ω} to violate the safety property *P*, there must be a specific state in σ_{ω} where shit hit the fan. That is, there must be a specific *k* such that any behaviour with the prefix $\sigma_{\omega}|_k$ is not in *P*.
- For σ_{ω} to be the limit of our sequence, however, that means there is a particular point in our sequence *i* after which all σ_j for $j \ge i$ agree with σ_{ω} for the first k + 1 states. According to the above point, however, those σ_j cannot be in *P*.

Let P be a safety property.

- Assume that there exists a sequence of behaviours $\sigma_0 \sigma_1 \sigma_2 \dots$ such that every $\sigma_i \in P$ but their limit $\sigma_\omega \notin P$.
- For σ_{ω} to violate the safety property *P*, there must be a specific state in σ_{ω} where shit hit the fan. That is, there must be a specific *k* such that any behaviour with the prefix $\sigma_{\omega}|_k$ is not in *P*.
- For σ_{ω} to be the limit of our sequence, however, that means there is a particular point in our sequence *i* after which all σ_j for $j \ge i$ agree with σ_{ω} for the first k + 1 states. According to the above point, however, those σ_j cannot be in *P*.

Contradiction.

Let P be a liveness property. We want to show that \overline{P} contains all behaviours, that is, that any behaviour σ is the limit of some sequence of behaviours in P.

• If $\sigma \in P$,

- If $\sigma \in P$, then just pick the sequence $\sigma \sigma \sigma \dots$ which trivially converges to σ .
- If $\sigma \notin P$:
 - It must not "do the right thing eventually", i.e. no finite prefix of σ ever fulfills the promise of the liveness property.

- If $\sigma \in P$, then just pick the sequence $\sigma \sigma \sigma \dots$ which trivially converges to σ .
- If $\sigma \notin P$:
 - It must not "do the right thing eventually", i.e. no finite prefix of σ ever fulfills the promise of the liveness property.
 - However, every finite prefix σ|_i of σ could be extended differently with some ρ_i such that σ|_iρ_i is in P again.

- If $\sigma \in P$, then just pick the sequence $\sigma \sigma \sigma \dots$ which trivially converges to σ .
- If $\sigma \notin P$:
 - It must not "do the right thing eventually", i.e. no finite prefix of σ ever fulfills the promise of the liveness property.
 - However, every finite prefix σ|_i of σ could be extended differently with some ρ_i such that σ|_iρ_i is in P again.
 - Then, $\lim_{i\to\infty} (\sigma|_i \rho_i) = \sigma$ and thus σ is the limit of a sequence in *P*.

The Big Result

Alpern and Schneider's Theorem

Every property is the intersection of a safety and a liveness property

The Big Result

Alpern and Schneider's Theorem

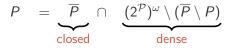
Every property is the intersection of a safety and a liveness property

$$P = \underbrace{\overline{P}}_{\text{closed}} \cap \underbrace{(2^{\mathcal{P}})^{\omega} \setminus (\overline{P} \setminus P)}_{\text{dense}}$$

The Big Result

Alpern and Schneider's Theorem

Every property is the intersection of a safety and a liveness property

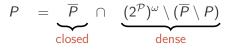


Why are these two components closed and dense? Also, let's do the set theory reasoning to show this equality holds.

The Big Result

Alpern and Schneider's Theorem

Every property is the intersection of a safety and a liveness property



Why are these two components closed and dense? Also, let's do the set theory reasoning to show this equality holds. If there's time: Let's also prove that every property is the intersection of two liveness properties.

Decomposing Safety and Liveness

Let's break these up into their safety and liveness components.

• The program will allocate exactly 100MB of memory.

Decomposing Safety and Liveness

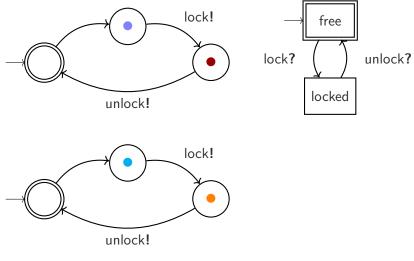
Let's break these up into their safety and liveness components.

- The program will allocate exactly 100MB of memory.
- If given an invalid input, the program will return the value -1.

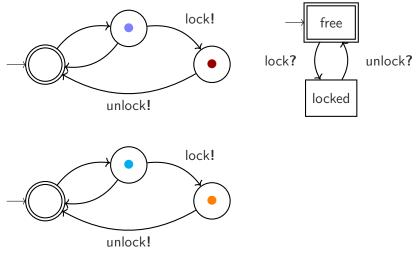
Decomposing Safety and Liveness

Let's break these up into their safety and liveness components.

- The program will allocate exactly 100MB of memory.
- If given an invalid input, the program will return the value -1.
- The program will sort the input list.



Does the product satisfy $G(\circ \Rightarrow F \circ)$ (*eventual entry*)?



Does the product satisfy $G(\bullet \Rightarrow F \bullet)$ (*eventual entry*)?

Fairness

Definition

Fairness is a scheduling constraint that ensures that if a process is ready to move, it will eventually be allowed to move.

Fairness

Definition

Fairness is a scheduling constraint that ensures that if a process is ready to move, it will eventually be allowed to move.

Two types of fairness:

• Weak Fairness — If a process is continuously ready, it will eventually be scheduled:

 $G(G \text{ Ready} \Rightarrow F \text{ Scheduled})$

Fairness

Definition

Fairness is a scheduling constraint that ensures that if a process is ready to move, it will eventually be allowed to move.

Two types of fairness:

• Weak Fairness — If a process is continuously ready, it will eventually be scheduled:

 $G(G \text{ Ready} \Rightarrow F \text{ Scheduled})$

• Strong Fairness — If a process is ready infinitely often, it will eventually be scheduled.

 $G(GF \text{ Ready} \Rightarrow F \text{ Scheduled})$

Bibliography

- Baier/Katoen: Principles of Model Checking, Section 3.3 (parts), 3.4 (parts), 3.5
- Bowen Alpern and Fred B. Schneider: *Defining Liveness*, Information Processing Letters 21(4):181-185, October 1985.